Bemessung Schlitzpass nach DWA-M509 - Minimale Wassertiefen

Eingangsdaten - fest

Kennwerte Fischregion	DWA-M509	Zeichen	NA/ot	Einheit	Formel
ischregion	gem. Kap. 3.1.4.1	Zeichen	Barbenregion	Ellineit	Former
nax. Höhe Fischkörper:	gem. Kap. 4.6.3.1, Tab. 15	H _{Fisch} =	0,16	m	
max. Hölle Fischkörper:	gem. Kap. 4.6.3.1, Tab. 15	L _{Fisch} =	1,00		
nax. Dicke Fischkörper:	gem. Kap. 4.6.3.1, Tab. 15	D _{Fisch} =	0,12	m	
Geometrische Grenzwerte					
nin. Wassertiefe → an Engstellen	gem. Kap. 4.6.3.2, Gl. 4.1 gem. Kap. 4.6.3.3, Gl. 4.2	$h_{eff,min} = h_{eff,min, Engstelle} = h_{eff,min, Engstelle}$	0,80 0,32		= 2.5*H _{Fisch} = 2*H _{Fisch}
nin. Schlitzbreite	gem. Kap. 4.6.3.4, Gl. 4.3	s _{min} =	0,36		= 3*D _{Fisch}
nin. lichte Beckenlänge	gem. Kap. 4.6.3.6, Gl. 4.5	$L_{LB,min} =$	3,00	m	= 3*L _{Fisch}
lydraulische Grenzwerte		ı			
nax. Fließgeschwindigkeit: nittlere Fließgeschwindigkeit	gem. Kap. 4.6.4.2.2, Tab. 17 gem. Kap. 4.6.4.2.3, Tab. 18	$v_{max} = v_{m} = 0$	1,60 1,20		
nin. Fließgeschwindigkeit:	gem. Kap. 4.6.4.3, Tab. 20	v _{min} =	0,30		
nax. Leistungsdichte:	gem. Kap. 4.6.4.4, Tab. 21	$p_{D,grenz} =$	100	W/m ³	
Sicherheitsbeiwerte		ı			
Dimensionen Fließgeschwindigkeiten	gem. Kap. 8.2.2.4 gem. Kap. 8.2.2.4	S _g S _v	1,00 0,95	-	
eistungsdichte	gem. Kap. 8.2.2.4	S _p	0,90	-	
Betriebliche Sicherheit	gem. Kap. 8.2.2.4	S _b	1,00	-	
lydraulische Bemessungswerte	1	·			
ließgeschwindigkeit	gem. Kap. 8.2.2.4, Gl. 8.3a	$v_{bem} =$	1,52		$= S_b * S_v * V_{max}$
eistungsdichte	gem. Kap. 8.2.2.4, Gl. 8.3b	p _{D,bem} =	90	W/m ³	= S _p * p _{D,grenz}
eckenabmessungen		ı			
chlitzbreite, gewählt	gem. Kap. 8.2.4.2, Tab. 43	s =	1	m	
chte Beckenlänge, regulär	gem. Kap. 8.2.4.2, Tab. 44	$s >= s_{min}$ $L_{LB,reg,rechnerisch} =$	OK 4,13	m	= 8.1*s
onte beckenlange, regular → gewählt	g / Wp. J.E.T.E, Tab. 44	L _{LB,reg} ,rechnerisch =	3,00		
-		L _{LB,reg} >= L _{LB,min}	0K		
eckenbreite, regulär	gem. Kap. 8.2.4.2, Gl. 8.9	b _{reg,rechnerisch} =	2,25	m	= 3/4 L _{LB,reg}
→ gewählt		$b_{reg} =$	2,35	m	
chte Beckenlänge, Wendebecken (WB)	gem. Kap. 8.2.2.2, Bild 247	L _{LB,WB} =	5,10		=2*b _{reg} +d
eckenbreite, Wendebecken reier Überstand Leitwand	gem. Kap. 8.2.4.2, Tab. 44	b _{WB} = c-d =	3,00 0,77		= L _{LB,reg} = 1.5*s
ersatzmaß reite des Umlenkblocks	gem. Kap. 8.2.4.2, Tab. 44 gem. Kap. 8.2.4.2, Tab. 44	a = b _U =	0,26 0,51	m	= 0.5*s = 1.0*s
/anddicke		d =	0,40	m	
eitelement Länge, Wendebecken änge Wandeinschnitt im Wendebecken	gem. Kap. 8.2.2.2, Bild 247 gem. Kap. 8.2.2.2, Bild 247	$2*s = 1/4*L_{LB,reg} =$	1,02 0,75		
ubstratschicht im Schlitzpass	gem. Kap. 4.6.6	d _{Subs} =	0,30		
·	_	u _{Subs} –			
lydraulische Bemessung DW: Ausstieg FFA W30		H _{OW,W30} =	360,10	m NHN	
W: Austieg FFA W330		H _{OW,W330} =	360,10	m NHN	
W: Einstieg W30		H _{UW,W30} =	351,03		
W: Einstieg W330 W-Sohle		$H_{UW,W330} = H_{OW,Sohle} =$	351,38	m NHN m NHN	
W-Sohle		H _{UW,Sohle} =		m NHN	
bflüsse		$Q_{30} = Q_{330} = 0$	94,40 253,00		
		MHQ =	200,00	m³/s	
Nasserspiegeldifferenz gesamt W ₃₀ Nasserspiegeldifferenz gesamt W ₃₃₀		h _{ges,W30} =	9,07 8,72	m m	= H _{OW,W30} - H _{UW,W30} = H _{OW,W330} - H _{UW,W330}
Wasserspiegeldifferenz OW _{W330} - UW _{W30}		$h_{ges,W330} = h_{ges,max} =$	9,07		= H _{OW,W330} - H _{UW,W30}
→ Bezugswasserstand W ₃₀					
Vasserspiegeldifferenz pro Becken, max. Vasserspiegeldifferenz pro Becken, bem.	gem. Kap. 8.2.4.3, Gl. 8.4	$\Delta h_{max} =$	0,130		$= v_{\text{max}}^2/2g$ = $v_{\text{bem}}^2/2g$
		Λh =	0.118		
→ tateächliche Wassersniegeldifferenz		$\Delta h_{bern} =$ $\Delta h =$	0,118		= h _{ges,W30} /(n+1)
→ tatsächliche Wasserspiegeldifferenz		$\Delta h =$	0,111		
		$\Delta h = \Delta h < \Delta h_{\text{max}}$	0,111 OK		$= h_{ges,W30}/(n+1)$
ieckenanzahl	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h =$ $\Delta h < \Delta h_{max}$ $n_{rechnerisch} =$	0,111 OK 76,02		
reckenanzahl → gewählt	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h = \Delta h < \Delta h_{\text{max}}$	0,111 OK		$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem}-1$ $= n+1$
ieckenanzahl → gewählt Liegelanzahl	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = $	0,111 OK 76,02 81 82	m - -	= $h_{ges,W30}/(n+1)$ = $h_{ges,W30}/\Delta h_{bem}$ -1
eckenanzahl - gewählt iegelanzahl	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h =$ $\Delta h < \Delta h_{max}$ $n_{rechnerisch} =$ $n =$	0,111 OK 76,02 81	m - -	$\begin{split} &= h_{ges,W30}/(n+1) \\ &= h_{ges,W30}/\Delta h_{bem} - 1 \\ &= n+1 \\ &= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel} ^* d \end{split}$
eckenanzahl • gewählt iegelanzahl chsenlänge Beckenpass	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = $	0,111 OK 76,02 81 82	m - - - m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem}-1$ $= n+1$
eckenanzahl → gewählt legelanzahl chsenlänge Beckenpass änge des Beckenpasses	gem. Kap. 8.2.4.3, Gl. 8.2	$\begin{split} \Delta h &= \\ \Delta h < \Delta h_{max} \\ n_{rechnerisch} &= \\ n &= \\ n_{Riegel} &= \\ L_{ges} &= \end{split}$	0,111 OK 76,02 81 82 281,30	m - - - m	$\begin{split} &= h_{ges,W30}/(n+1) \\ &= h_{ges,W30}/\Delta h_{bem} - 1 \\ &= n+1 \\ &= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel} ^* d \end{split}$
eckenanzahl • gewählt iiegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Rlogel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ B_{Beckenpass} = $	0,111 OK 76,02 81 82 281,30 15,80 8,65	m - - - m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem}-1$ $= n+1$ $= (n-2)^*L_{LB,reg}+2^*(b_{reg}+d+b_{WB})+n_{Riegel}*d$ $= 5^*L_{LB,reg}+2^*d$ $= 3^*b_{reg}+4^*d$ min Stauziel
eckenanzahl gewählt tiegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses	gem. Kap. 8.2.4.3, Gl. 8.2	$\Delta h = \\ \Delta h < \Delta h_{max} \\ n_{rechnerisch} = \\ n = \\ n_{Ringel} = \\ L_{ges} = \\ L_{Beckenpass} = $	0,111 OK 76,02 81 82 281,30	m - - - m m	$\begin{split} &= h_{ges,W30}/(n+1) \\ &= h_{ges,W30}/\Delta h_{bem} - 1 \\ &= n+1 \\ &= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d \\ &= 5^* L_{LB,reg} + 2^* d \\ &= 3^* b_{reg} + 4^* d \end{split}$
eckenanzahl gewählt tiegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses	gem. Kap. 8.2.4.3, Gl. 8.2 gem. Kap. 8.2.4.3, Gl. 8.12	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ B_{Beckenpass} = \\ h_{u,W30} = $	0,111 OK 76,02 81 82 281,30 15,80 8,65	m - - - m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,reg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{eff,min} $
eckenanzahl gewählt tiegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz		$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ B_{Beckenpass} = \\ h_{u,W30} = \\ h_{o,W30} = $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK	m - - - m m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,reg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{eff,min}$ $= h_{u,W30} + \Delta h$ Schwimmbalk Sohle OW
eckenanzahl gewählt tiegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz	gem. Kap. 8.2.4.3, Gl. 8.12	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ B_{Beckenpass} = \\ h_{u,W30} = \\ h_{u,W30} = \\ h_{u} > 0.67 h_{o}$	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK	m - - - m m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,reg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{eff,min} $
eckenanzahl • gewählt tiegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung,	gem. Kap. 8.2.4.3, Gl. 8.12	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ H_{u,W30} = \\ $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK	m - - m m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,reg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{eff,min}$ $= h_{u,W30} + \Delta h$ Schwimmbalk Sohle OW
eckenanzahl , gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!)	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,w30} = \\ $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86	m - - - m m m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem}-1$ $= n+1$ $= (n-2)^*L_{LB,reg}+2^*(b_{reg}+d+b_{WB})+n_{Riegel}^*d$ $= 5^*L_{LB,reg}+2^*d$ $= 3^*b_{reg}+4^*d$ $= h_{eff,min} $
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses fassertiefen unterhalb Schlitz fassertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!)	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,W30} = \\ h_{o,W30} = \\ h_{o,W30} = \\ h_{o} > 0.67h_{o}$ $h_{o} > 3\Delta h$ $h_{m,W30} = \\ h_{m,W30} = \\ h_{o} = 1$	0,111 OK 76,02 81 82 281,30 15,80 0,80 0,91 OK OK 0,86	m - - - m m m m	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,leg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{eff,min}$ $= h_{u,W30} + \Delta h$ $= (h_{o,W30} + h_{u,W30})/2$ $= (h_{o,W30} + h_{u,W30})/2$ $= H_{OW,W30} - h_{o,W30}$
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!)	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,w30} = \\ $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86	m m m m m m m m NHN	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,leg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{eff,min}$ $= h_{u,W30} + \Delta h$ $= (h_{u,W30} + h_{u,W30})/2$ $= H_{OW,W30} - h_{u,W30}$ $= H_{UW,W30} - h_{u,W30}$
eckenanzahl • gewählt ieigelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz inttlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!)	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,W30} = \\ $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19	m m m m m m m m NHN	$= h_{ges,W30}/(n+1)$ $= h_{ges,W30}/\Delta h_{bem} - 1$ $= n+1$ $= (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d$ $= 5^* L_{LB,reg} + 2^* d$ $= 3^* b_{reg} + 4^* d$ $= h_{ef,min} \qquad min. Stauziel oder W_{30} = h_{u,W30} + \Delta h = (h_{o,W30} + h_{u,W30})/2 = H_{oW,W30} - h_{o,W30} = H_{u,W30} - h_{u,W30} = H_{u,W30} - h_{u,W30} Bild 250: Sci$
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz /assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch /endebecken!), Riegel zu Riegel [m]	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,W30} = \\ $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19	m m m m m m m NHN m	$ = h_{ges,W30}/(n+1) $ $ = h_{ges,W30}/\Delta h_{bem} - 1 $ $ = n+1 $ $ = (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d $ $ = 5^* L_{LB,reg} + 2^* d $ $ = 3^* b_{reg} + 4^* d $ $ = h_{eff,min} $
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m]	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,W30} = \\ h_{u,W30} = \\ h_{u,W30} = \\ h_{w30} $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23	m m m m m m m NHN m	$ = h_{ges,W30}/(n+1) $ $ = h_{ges,W30}/\Delta h_{bem} - 1 $ $ = n+1 $ $ = (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d $ $ = 5^* L_{LB,reg} + 2^* d $ $ = 3^* b_{reg} + 4^* d $ $ = h_{eff,min} $
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz /assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch /endebecken!), Riegel zu Riegel [m]	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Rieget} = \\ L_{ges} = \\ L_{ges} = \\ L_{beckenpass} = \\ h_{u,w30} = \\ h_$	0,111 OK 76,02 81 82 281,30 15,80 0,80 0,91 OK 0,86 359,19 350,23 0,111 351,03 OK	m m m m m m m NHN m	$ = h_{ges,W30}/(n+1) $ $ = h_{ges,W30}/\Delta h_{bem} - 1 $ $ = n+1 $ $ = (n-2)^* L_{LB,reg} + 2^* (b_{reg} + d + b_{WB}) + n_{Riegel}^* d $ $ = 5^* L_{LB,reg} + 2^* d $ $ = 3^* b_{reg} + 4^* d $ $ = h_{eff,min} $
eckenanzahl • gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz /assertiefen oberhalb Schlitz bittlere Beckenwassertiefe chlihöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch /endebecken!), Riegel zu Riegel [m] /assertiefen unterhalb der FAA	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Rieget} = \\ L_{ges} = \\ L_{ges} = \\ L_{beckenpass} = \\ h_{u,w30} = \\ h_$	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111	m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Sct = (H _{Sohie,Einlauf} - H _{Sohie,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohie}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m]	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,W30} = \\ h_{o,W30} = \\ h_{o,W30} = \\ h_{o} > 3\Delta h \\ h_{m,W30} = \\ H_{Sohle,Einlauf} = \\ \Delta h_{Sohle,Einlauf} = \\ \Delta h_{Sohle,Becken} = \\ h_{UW,W30} > h_{eff,min}$	0,111 OK 76,02 81 82 281,30 15,80 0,80 0,91 OK 0,86 359,19 350,23 0,111 351,03 OK	m m m m m m m NHN m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh Schwimmbalk Sohle OW = (h _{0,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{0,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Scl = (H _{Sohle,Einlauf} - H _{Sohle,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohle}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz /assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkantel) ohlhöhe am Auslauf (Substratoberkantel) ohlhöhendifferenz innerhalb eines Beckens (auch /endebecken!), Riegel zu Riegel [m] /assertiefen unterhalb der FAA	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ h_{u,W30} = \\ $	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK	m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Sct = (H _{Sohie,Einlauf} - H _{Sohie,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohie}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz /assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkantel) ohlhöhe am Auslauf (Substratoberkantel) ohlhöhendifferenz innerhalb eines Beckens (auch /endebecken!), Riegel zu Riegel [m] /assertiefen unterhalb der FAA	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ B_{Beckenpass} = \\ h_{u,w30} = \\ h_{u,w30}$	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK 0,86 359,19 350,23 0,111 351,03 OK	m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh Schwimmbalk Sohle OW = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Scl = (H _{Schie,Einlauf} - H _{Schie,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohle} = (2g*Δh)^0.5 = Q _{W30} /(h _{m,W30} *b _{reg})
eckenanzahl gewählt idegelanzahl chsenlänge Beckenpasses änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz //assertiefen oberhalb Schlitz inittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = B _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = h _{u,W30} = V _{max,Becken,W30} > n _{eff,min} V _{max,Becken,W30} = V _{max,Becken,W30} = V _{max,Becken,W30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275	m m m m m NHN m NHN	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh Schwimmbalk Sohle OW = (h _{0,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{0,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Scl = (H _{Sohle,Einlauf} - H _{Sohle,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohle}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	$\Delta h = \\ \Delta h < \Delta h_{max}$ $n_{rechnerisch} = \\ n = \\ n_{Riegel} = \\ L_{ges} = \\ L_{Beckenpass} = \\ B_{Beckenpass} = \\ h_{u,w30} = \\ h_{u,w30}$	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK 0,86 359,19 350,23 0,111 351,03 OK	m m m m m m NHN m NHN m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh Schwimmbalk Sohle OW = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Scl = (H _{Schie,Einlauf} - H _{Schie,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohle} = (2g*Δh)^0.5 = Q _{W30} /(h _{m,W30} *b _{reg})
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = B _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = h _{u,W30} = V _{max,Becken,W30} > n _{eff,min} V _{max,Becken,W30} < v _{max} V _{m,Becken,Rus,W30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275	m m m m m NHN m NHN	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh Schwimmbalk Sohle OW = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Scl = (H _{Schie,Einlauf} - H _{Schie,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Sohle} = (2g*Δh)^0.5 = Q _{W30} /(h _{m,W30} *b _{reg})
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasses änge des Beckenpasses /assertiefen unterhalb Schlitz /assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch /endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit ittlere Fließgeschwindigkeit im regulären Becken	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = B _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = h _{u,W30} = V _{max,Becken,W30} > n _{eff,min} V _{max,Becken,W30} < v _{max} V _{m,Becken,Rus,W30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275	m m m m m m NHN m NHN m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpass änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz ittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit ittlere Fließgeschwindigkeit im regulären Becken ittlere Fließgeschwindigkeit im Wendebecken	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schle,Einlauf} = H _{Schle,Einlauf} = Δh _{Schle,Becken} = h _{u,W,W30} > h _{eff,min} V _{max,Becken,W30} = V _{max,Becken,W30} = V _{max,Becken,W30} = V _{m,Becken,W30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275	m m m m m m NHN m NHN m m m m m s m/s m/s	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} *d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh Schwimmbalk Sohle OW = (h _{0,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{0,W30} = H _{UW,W30} -h _{u,W30} Bild 250: Scl = (H _{Schie,Einlauf} - H _{Schie,Auslauf}) / n _{Riegel} = H _{UW,W30} -H _{UW,Schie} = (2g*Δh)^0.5 = Q _{W30} /(h _{m,W30} *b _{wB})
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz iittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit iittlere Fließgeschwindigkeit im regulären Becken iittlere Fließgeschwindigkeit im Wendebecken berfallbeiwert	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = B _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schie, Einlauf} = H _{Schie, Einlauf} = Δh _{Schie, Becken} = h _{u,W,W30} > h _{eff,min} V _{max, Becken, W30} < V _{max} V _{m, Becken, W30} = V _{max, Becken, W30} = V _{max, Becken, W30} = V _{m, Becken, W30} = V _{m, Becken, W30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275	m m m m m m NHN m NHN m m m m m s m/s m/s	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasse änge des Beckenpasses reite des Beckenpasses /assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz iittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit iittlere Fließgeschwindigkeit im regulären Becken iittlere Fließgeschwindigkeit im Wendebecken berfallbeiwert	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = B _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = V _{max,Becken} = h _{u,W30} > h _{eff,min} V _{max,Becken,W30} = V _{max,Becken,W30} = V _{max,Becken,W30} = V _{max,Becken,W30} = V _{m,Becken,W30} = V _{m,Becken,W30} = Q _{w30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK 0,86 359,19 350,23 0,111 351,03 OK 0,275 0,216	m m m m m m NHN m NHN m m m m m s m/s m/s	$ = h_{ges,W30}/(n+1) $ $ = h_{ges,W30}/\Delta h_{bem} - 1 $ $ = n+1 $ $ = (n-2)^*L_{LB,reg} + 2^*(b_{reg} + d + b_{WB}) + n_{Riegel}^*d $ $ = 5^*L_{LB,reg} + 2^*d $ $ = 3^*b_{reg} + 4^*d $ $ = h_{eff,min} $
eckenanzahl gewählt ciegelanzahl chsenlänge Beckenpasses änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz inittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhe am Auslauf (Substratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit mittlere Fließgeschwindigkeit im regulären Becken sittlere Fließgeschwindigkeit im Wendebecken liberfallbeiwert bfluss (Krüger et al.)	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244	Δh = Δh < Δh _{max} n _{rechnerisch} = n = n _{Riegel} = L _{ges} = L _{Beckenpass} = B _{Beckenpass} = h _{u,W30} = h _{u,W30} = h _{u,W30} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = H _{Schie,Einlauf} = V _{max,Becken} = h _{u,W30} > h _{eff,min} V _{max,Becken,W30} = V _{max,Becken,W30} = V _{max,Becken,W30} = V _{max,Becken,W30} = V _{m,Becken,W30} = V _{m,Becken,W30} = Q _{w30} =	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK 0,86 359,19 350,23 0,111 351,03 OK 0,275 0,216	m m m m m MHN m NHN m m's - m/s - m³/s	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} +2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min}
eckenanzahl gewählt iegelanzahl chsenlänge Beckenpasses änge des Beckenpasses reite des Beckenpasses //assertiefen unterhalb Schlitz //assertiefen oberhalb Schlitz iittlere Beckenwassertiefe ohlhöhe am Einlauf SOLL (Anrampung, ubstratoberkante!) ohlhöhendifferenz innerhalb eines Beckens (auch //endebecken!), Riegel zu Riegel [m] //assertiefen unterhalb der FAA ließgeschwindigkeit iittlere Fließgeschwindigkeit im regulären Becken iittlere Fließgeschwindigkeit im Wendebecken berfallbeiwert bfluss (Krüger et al.)	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244 gem. Kap. 8.2.4.3, Gl. 8.15a gem. Kap. 8.2.4.3, Gl. 8.14	Δh = Δh < Δh _{max}	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 0,275 0,216 0,399 0,555 OK	m m m m m MHN m NHN m m's - m/s - m³/s	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} *2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{O,W30} = Q _{W30} /(h _{m,W30} *b _{reg}) = Q _{W30} /(h _{m,W30} *b _{reg}) = Q _{W30} /((h _{m,W30} *b _{reg}) = 0.59*((1-(h _{u,W30} /h _{o,W30})^4.5)^0.48) = μ _{v,W30} *s*(g^0.5)*(h _{o,W30} ^1.5) = (ρ*g*Q _{W30} *Δh)/(L _{LB,reg} *h _{m,W30} *b _{reg})
deckenanzahl gewählt Eidegelanzahl chsenlänge Beckenpasses änge des Beckenpasses vassertiefen unterhalb Schlitz vassertiefen oberhalb Schlitz whittlere Beckenwassertiefe chlihöhe am Einlauf SOLL (Anrampung, substratoberkante!) chlihöhe am Auslauf (Substratoberkante!) chlihöhendifferenz innerhalb eines Beckens (auch vendebecken!), Riegel zu Riegel [m] vassertiefen unterhalb der FAA ließgeschwindigkeit mittlere Fließgeschwindigkeit im regulären Becken der Fließgeschwindigkeit im Wendebecken der Fließgeschwindigkeit im Wendebecken	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244 gem. Kap. 8.2.4.3, Gl. 8.15a gem. Kap. 8.2.4.3, Gl. 8.14	Δh = Δh < Δh _{max} Ah < Δh _{max}	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275 0,216 0,399 0,55 OK	m m m m m m NHN m m NHN m m m m m m m m m	$ = h_{ges,W30}/(n+1) $ $ = h_{ges,W30}/\Delta h_{bem} - 1 $ $ = n+1 $ $ = (n-2)^*L_{LB,reg} + 2^*(b_{reg} + d + b_{WB}) + n_{Riegel}^*d $ $ = 5^*L_{LB,reg} + 2^*d $ $ = 3^*b_{reg} + 4^*d $ $ = h_{eff,min} $
Beckenanzahl	gem. Kap. 8.2.4.3, Gl. 8.12 gem. Kap. 8.2.4.3, Gl. 8.13 vgl. Kap. 8.2.4.3, S. 244 gem. Kap. 8.2.4.3, Gl. 8.15a gem. Kap. 8.2.4.3, Gl. 8.14	Δh = Δh < Δh _{max}	0,111 OK 76,02 81 82 281,30 15,80 8,65 0,80 0,91 OK OK 0,86 359,19 350,23 0,111 351,03 OK 1,47 OK 0,275 0,216 0,399 0,55 OK	m m m m m m NHN m m NHN m m m m m m m m m	= h _{ges,W30} /(n+1) = h _{ges,W30} /Δh _{bem} -1 = n+1 = (n-2)*L _{LB,reg} *2*(b _{reg} +d+b _{WB})+n _{Riegel} *d = 5*L _{LB,reg} +2*d = 3*b _{reg} +4*d = h _{eff,min} = h _{u,W30} + Δh = (h _{o,W30} +h _{u,W30})/2 = H _{OW,W30} -h _{o,W30} = H _{UW,W30} -h _{O,W30} = Q _{W30} /(h _{m,W30} *b _{reg}) = Q _{W30} /(h _{m,W30} *b _{reg}) = Q _{W30} /((h _{m,W30} *b _{reg}) = 0.59*((1-(h _{u,W30} /h _{o,W30})^4.5)^0.48) = μ _{v,W30} *s*(g^0.5)*(h _{o,W30} ^1.5) = (ρ*g*Q _{W30} *Δh)/(L _{LB,reg} *h _{m,W30} *b _{reg})

		Fließgewässerregion						
Gesamthöhen- unterschied	Obere Forellen- region	Untere Forellenregion	Äschen- region	Barben- region	Brachsen- region	Kaulbarsch- Flunder- Region		
< 3 m	2,2	2,1	2,0	1,8	1,7	1,6		
3 m bis 6 m	2,1	2,0	1,9	1,7	1,6	1,5		
6 m bis 9 m	2,0	1,9	1,8	1,6	1,5	1,4		
>9 m	1,9	1,8	1,7	Ei	nzelfallentscheid	ung		

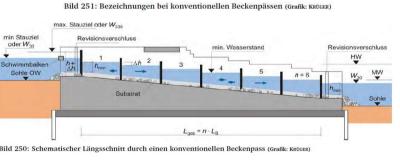
	Fließgewässerregion							
Gesamtlänge	Obere Forellen- region	Untere Forellenregion	Äschen- region	Barbenregion	Brachsenregion	Kaulbarsch- Flunder- Region		
< 5 m	2,0	1,9	1,8	1,6	1,5	1,4		
5 m bis 10 m	1,7	1,6	1,5	1,4	1,3	1,2		
>10 m bis 25 m	1,5	1,4	1,3	1,2	1,1	1,0		

Tabelle 20: Grenzwerte für die minimale Fließgeschwindigkeit ν_{mn} (m/s) im Wanderkorridor

Grenzwert für ν_{\min} im Wanderkorridor		
Gewässer mit Großsalmoniden, z.B. Lachs, Meerforelle, Seeforelle, Huchen	0,3 m/s	
alle anderen Gewässer	0,2 m/s	

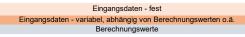
Tabelle 21: Grenzwerte für die Leistungsdichte bei der Energiedissipation in Fischaufstiegsanlagen und fischpassierbaren Bauwerken

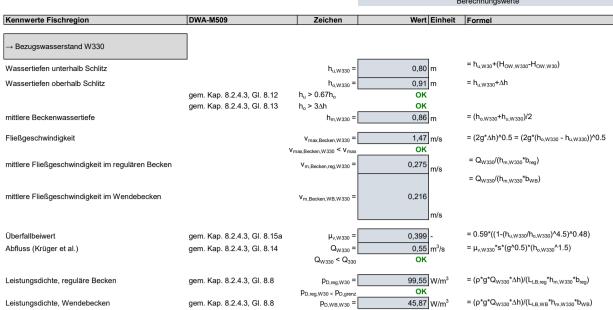
	Spezifische Leistungsdichte, Grenzwerte für Fischaufstiegsanlagen und fischpassierbare Bauwerke					
	Beckent	Störsteinbauweise				
Fließgewässerregion	ohne Zander und Hecht	mit Zander oder Hecht				
Obere Forellenregion	250 W/m ³		300 W/m3			
Untere Forellenregion	225 W/m ³		275 W/m ³			
Äschenregion	200 W/m ³		250 W/m ³			
Barbenregion	150 W/m ³	100 W/m ³	200 W/m ³			
Brachsenregion	125 W/m ³	100 W/m ³	175 W/m ³			
Kaulbarsch-Flunder-Region	100 W/m ³	100 W/m ³	150 W/m ³			


Tabelle 43: Geometrische Bemessungswerte für $S_{\rm g}=1$ für die Becken sowie die Schlitzweite bei Schlitzpässen (siehe Rild 257)

Fischarten	Beckenabme	ssungen (m)	Schlitz (m)		
	Länge $L_{\text{\tiny LB}}$	Breite b	Schlitzweite s	Wassertiefe h,	
Bachforelle	1,951)	1,50	0,20	0,504)	
Äsche, Döbel, Plötze	2,453)	1,85	0,30	0,705)	
Barbe, Zander, Meerforelle	2,453)	1,85	0,30	0,705)	
Lachs, Huchen, Hecht	3,002)	2,25	0,35	0,805)	
Brachsen, Karpfen	3,253)	2,45	0,40	0,905)	
Stör	9,002)	6,75	1,10	2,205)	
Maßgebliche Faktoren:	1) Energiedissipation 2) Fischlänge (t _{mob}) 3) hydraulische Verhältnisse (Strahlausbreitung) 4) h _a > h _y 5) hydraulische Verhältnisse (Strahlausbreitung); gerundeter Wert gemäß möglichem Wertebereich der Tabelle 44 in Verbindung mit 4.6.3 (t _h > 2.5 · h _{mob})				

Abmessungen		Faktor x _i	empfohlener Faktor x_i	
Schlitzbreite	$s = x_1 \cdot s$	1,0	1,0	
Beckenlänge ¹⁾	$L_{\text{LB}} = x_2 \cdot s$	8,10 bis 8,35	8,1	
Freier Überstand der Leitwand	$c - d = x_3 \cdot s$	1,0 bis 1,5	1,5	
Versatzmaß	$a = x_4 \cdot s$	0,4 bis 0,8	0,5	
Breite des Umlenkblocks	$b_u = x_s \cdot s$	1,0 bis 1,5	1,0 bzw. > 25 cm	
Abstand Leitwand - Schlitz	$g = x_6 \cdot s$	0,35 bis 0,60	0,45	

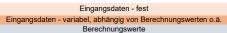


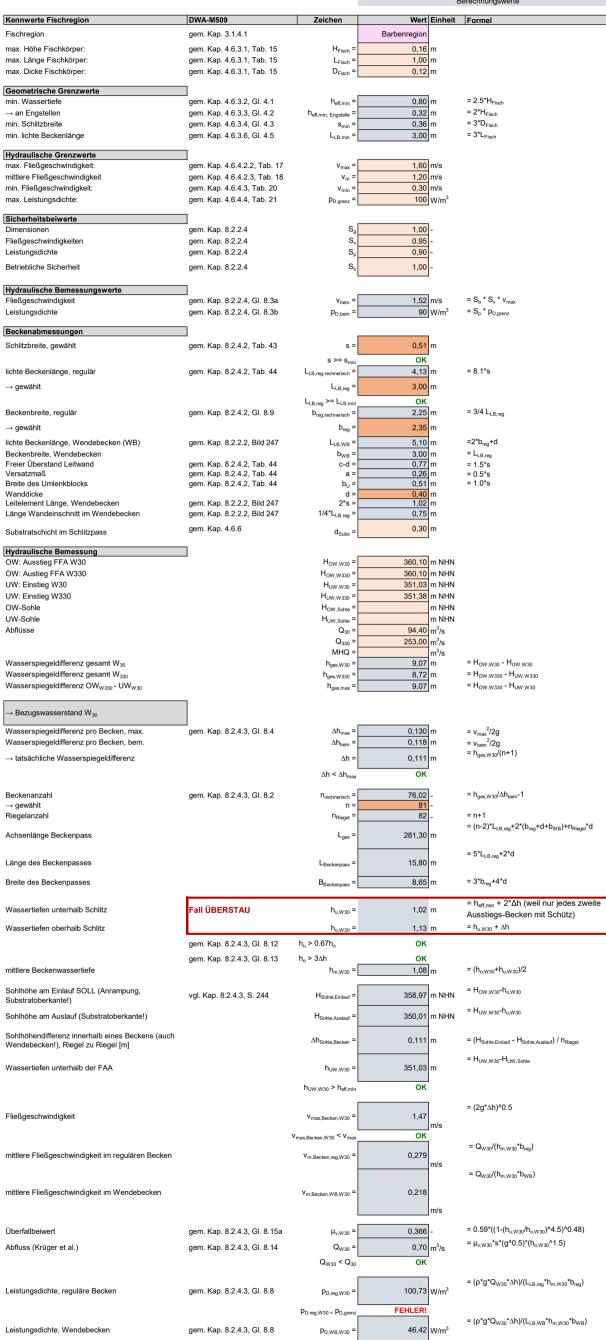

Bild 251: Bezeichnungen bei konventionellen Beckenpässen (Grafik: KROGER)

Seite 1 von 2 07.03.2022

 $p_{\text{D,WB,W30}} < p_{\text{D,grenz}}$

ZUSAMMENFASSUNG SCHLITZPASS		Abmessungen
Wasserspiegeldifferenz gesamt (W ₃₀ und W ₃₃₀) [m]	hges,W30 =	9,07
Wasserspiegeldifferenz pro Becken [m]	Δh =	0,111
Wassertiefen unterhalb Schlitz, W ₃₀ [m]	hu,W30 =	0,80
Wassertiefen oberhalb Schlitz, W ₃₀ [m]	ho,W30 =	0,91
Mittlere Wassertiefe im Becken, W ₃₀ [m]	hm.W30 =	0,86
Wassertiefen unterhalb Schlitz, W ₃₃₀ [m]	hu,W330 =	0,80
Wassertiefen oberhalb Schlitz, W ₃₃₀ [m]	ho,W330 =	0,91
Mittlere Wassertiefe im Becken, W ₃₃₀ [m]	hm,W330 =	0,86
Initials Wassians III Bestell, Wassi [11]	1111, \$\$ \$550 =	0,00
Abfluss, W ₃₀ [m³/s]	QW30 =	0,55
Abfluss, W ₃₃₀ [m³/s]	QW330 =	0,55
Sohlhöhe am Einlauf (Anrampung, Substratoberkante!) [m NHN]	HSohle,Einlauf =	359,19
Sohlhöhe am Auslauf (Substratoberkante!) [m NHN]	HSohle,Auslauf =	350,23
Sohlhöhendifferenz innerhalb eines Beckens (auch Wendebecken!), Riegel zu Riegel [m] *	ΔhSohle,Becken =	0,111
Substratschicht im Schlitzpass **	d _{Subs} =	0,30
Achsenlänge Beckenpass [m]	Lges =	281,30
Beckenanzahl [Stk]	n =	81
Riegelanzahl [Stk]	nRiegel =	82
Schlitzbreite, gewählt [m] ***	s =	0,51
lichte Beckenlänge, regulär [m]	LLB,reg =	3,00
Beckenbreite, regulär [m]	breg =	2,35
lichte Beckenlänge, Wendebecken [m]	LLB,WB =	5,10
Beckenbreite, Wendebecken [m]	bWB =	3,00
Freier Überstand Leitwand [m]	c-d =	0,77
Versatzmaß [m]	a =	0,26
Breite des Umlenkblocks [m]	bU =	0,51
Wanddicke [m]	d =	0,40
Leitelement Länge, Wendebecken [m]	2*s =	1,02
Länge Wandeinschnitt im Wendebecken [m]	1/4*LLB,reg =	0,75


* Um die angesetzten Wasserspiegeldifferenzen einzuhalten, muss das Längsgefälle in den Wendebecken entsprechend reduziert werden (größere Abmessungen). Die Sohlhöhen an den Riegeln müssen dementsprechend eingehalten werden. Die geringere Fließgeschwindigkeit in den WBs ist vernachlässigbar (vgl Anmerkung zur "mittlere Fließgeschwindigkeit im Wendebecken")


M INROS LACKNER

* Angaben zur Korngrößenverteilung des Substrats etc. siehe DWA-M509, Kap. 4.6.6

*** Durch Ausrundungen an den Schlitzen verändert sich die Schlitzweite s. Dies muss in der Ausführungsplanung berücksichtigt werden, s muss eingehalten werden, da dies ein entscheidender Wert für die Bemessung ist.

Seite 2 von 2 07.03.2022

ОК

 $p_{D,WB,W30} < p_{D,grenz}$

Tabelle 17: Grenzwerte für die maximale Fließgeschwindigkeit ν_{\max} (m/s) in den Durchlässen von beckenartigen Fischaufstiegsanlagen und fischpassierbaren Bauwerken

	Fließgewässerregion						
Gesamthöhen- unterschied	Obere Forellen- region	Untere Forellenregion	Äschen- region	Barben- region	Brachsen- region	Kaulbarsch- Flunder- Region	
< 3 m	2,2	2,1	2,0	1,8	1,7	1,6	
3 m bis 6 m	2,1	2,0	1,9	1,7	1,6	1,5	
6 m bis 9 m	2,0	1,9	1,8	1,6	1,5	1,4	
>9 m	1,9	1,8	1,7	Ei	nzelfallentscheid	ung	

Tabelle 18: Grenzwerte für die mittlere Fließgeschwindigkeit $\nu_{\rm m}$ (m/s) im Wanderkorridor ge Fischaufstiegsanlagen und fischpassierbarer Bauwerke

	Fließgewässerregion							
Gesamtlänge	Obere Forellen- region	Untere Forellenregion	Äschen- region	Barbenregion	Brachsenregion	Kaulbarsch- Flunder- Region		
< 5 m	2,0	1,9	1,8	1,6	1,5	1,4		
5 m bis 10 m	1,7	1,6	1,5	1,4	1,3	1,2		
>10 m bis 25 m	1,5	1,4	1,3	1,2	1,1	1,0		

Tabelle 20: Grenzwerte für die minimale Fließ-geschwindigkeit ν_{min} (m/s) im Wanderkorridor

Grenzwert für ν_{\min} im Wanderkorrido	
Gewässer mit Großsalmoniden, z.B. Lachs, Meerforelle, Seeforelle, Huchen	0,3 m/s
alle anderen Gewässer	0,2 m/s

Tabelle 21: Grenzwerte für die Leistungsdichte bei der Energiedissipation in Fischaufstiegsanlagen und fischpas-

	Spezifische Leistungsdichte, Grenzwerte für Fischaufstiegsanlagen und fischpassierbare Bauwerke					
	Beckent	Störsteinbauweise				
Fließgewässerregion	ohne Zander und Hecht	mit Zander oder Hecht				
Obere Forellenregion	250 W/m ³		300 W/m3			
Untere Forellenregion	225 W/m ³		275 W/m ³			
Äschenregion	200 W/m ³		250 W/m ³			
Barbenregion	150 W/m ³	100 W/m ³	200 W/m ³			
Brachsenregion	125 W/m ³	100 W/m ³	175 W/m ³			
Kaulbarsch-Flunder-Region	100 W/m ³	100 W/m ³	150 W/m ³			

Tabelle 43: Geometrische Bemessungswerte für $S_g=1$ für die Becken sowie die Schlitzweite bei Schlitzpässen (siehe Rild 257)

Fischarten	Beckenabmessungen (m)		Schlitz (m)			
	Länge L _{LB}	Breite b	Schlitzweite s	Wassertiefe h,		
Bachforelle	1,951)	1,50	0,20	0,504)		
Äsche, Döbel, Plötze	2,453)	1,85	0,30	0,705)		
Barbe, Zander, Meerforelle	2,453)	1,85	0,30	0,705)		
Lachs, Huchen, Hecht	3,002)	2,25	0,35	0,805)		
Brachsen, Karpfen	3,253)	2,45	0,40	0,905)		
Stör	9,002)	6,75	1,10	2,205)		
Maßgebliche Faktoren:	 Energiedissipation Fischlänge (I_{read}) hydraulische Verhältnisse (Strahlausbreitung) h_{th} > h_{tg} hydraulische Verhältnisse (Strahlausbreitung); gerundeter Wert gemäß möglichem Wertebereich der Tabelle 44 in Verbindung mit 4.6.3 (h_{th} > 2.5 · h_{read}) 					

Abmessungen		Faktor x _i	empfohlener Faktor x _i	
Schlitzbreite	$s = x_1 \cdot s$	1,0	1,0	
Beckenlänge ¹⁾	$L_{\text{LB}} = x_2 \cdot s$	8,10 bis 8,35	8,1	
Freier Überstand der Leitwand	$c - d = x_3 \cdot s$	1,0 bis 1,5	1,5	
Versatzmaß	$a = x_4 \cdot s$	0,4 bis 0,8	0,5	
Breite des Umlenkblocks	$b_{U} = x_{5} \cdot s$	1,0 bis 1,5	1,0 bzw. > 25 cm	
Abstand Leitwand - Schlitz	$g = x_6 \cdot s$	0,35 bis 0,60	0,45	

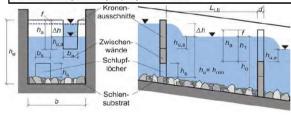


Bild 251: Bezeichnungen bei konventionellen Beckenpässen (Grafik: KRÜGER)

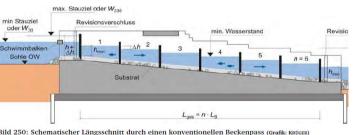
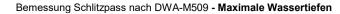
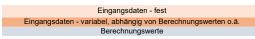
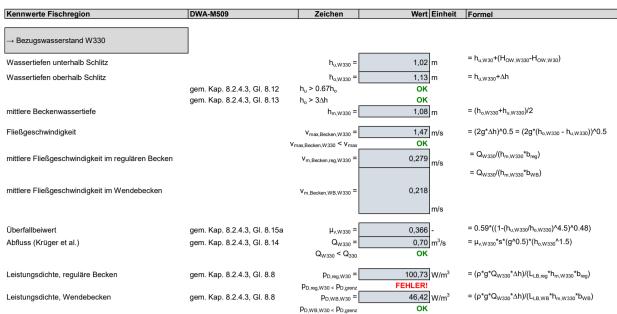





Bild 250: Schematischer Längsschnitt durch einen konventionellen Beckenpass (Grafik: KROGER)

Seite 1 von 2 07.03.2022

ZUSAMMENFASSUNG SCHLITZPASS		Abmessungen
Wasserspiegeldifferenz gesamt (W ₃₀ und W ₃₃₀) [m]	hges,W30 =	9,07
Wasserspiegeldifferenz pro Becken [m]	Δh =	0,111
Wassertiefen unterhalb Schlitz, W ₃₀ [m]	hu,W30 =	1,02
Wassertiefen oberhalb Schlitz, W ₃₀ [m]	ho,W30 =	1,13
Mittlere Wassertiefe im Becken, W ₃₀ [m]	hm,W30 =	1,08
Wassertiefen unterhalb Schlitz, W ₃₃₀ [m]	hu,W330 =	1,02
Wassertiefen oberhalb Schlitz, W ₃₃₀ [m]	ho,W330 =	1,13
Mittlere Wassertiefe im Becken, W ₃₃₀ [m]	hm,W330 =	1,08
Abfluss, W ₃₀ [m³/s]	QW30 =	0,705
Abfluss, W ₃₃₀ [m³/s]	QW330 =	0,705
Sohlhöhe am Einlauf (Anrampung, Substratoberkante!) [m NHN]	HSohle,Einlauf =	358,97
Sohlhöhe am Auslauf (Substratoberkante!) [m NHN]	HSohle,Auslauf =	350,01
Sohlhöhendifferenz innerhalb eines Beckens (auch Wendebecken!), Riegel zu Riegel [m] *	ΔhSohle,Becken =	0,111
Substratschicht im Schlitzpass **	d _{Subs} =	0,30
Achsenlänge Beckenpass [m]	Lges =	281,30
Beckenanzahl [Stk]	n =	81
Riegelanzahl [Stk]	nRiegel =	82
Schlitzbreite, gewählt [m] ***	s =	0,51
lichte Beckenlänge, regulär [m]	LLB,reg =	3,00
Beckenbreite, regulär [m]	breg =	2,35
lichte Beckenlänge, Wendebecken [m]	LLB,WB =	5,10
Beckenbreite, Wendebecken [m]	bWB =	3,00
Freier Überstand Leitwand [m]	c-d =	0,77
Versatzmaß [m]	a =	0,26
Breite des Umlenkblocks [m]	bU =	0,51
Wanddicke [m]	d =	0,40
Leitelement Länge, Wendebecken [m]	2*s =	1,02
Länge Wandeinschnitt im Wendebecken [m]	1/4*LLB,reg =	0,75

* Um die angesetzten Wasserspiegeldifferenzen einzuhalten, muss das Längsgefälle in den Wendebecken entsprechend reduziert werden (größere Abmessungen). Die Sohlhöhen an den Riegeln müssen dementsprechend eingehalten werden. Die geringere Fließgeschwindigkeit in den WBs ist vernachlässigbar (vgl Anmerkung zur "mittlere Fließgeschwindigkeit im Wendebecken")

M INROS LACKNER

* Angaben zur Korngrößenverteilung des Substrats etc. siehe DWA-M509, Kap. 4.6.6

*** Durch Ausrundungen an den Schlitzen verändert sich die Schlitzweite s. Dies muss in der Ausführungsplanung berücksichtigt werden, s muss eingehalten werden, da dies ein entscheidender Wert für die Bemessung ist.

Seite 2 von 2 07.03.2022